Literatursammlung

Literatursammlung zum EuGH-Urteil (C-528/16), zur genrechtlichen Einordnung von Mutagenese Verfahren und zu Anwendungen der neuen Züchtungsverfahren 

A: EuGH-Urteil (C-528/16) zu Mutageneseverfahren


GA Bobek – EuGH: Vorabentscheidung von Generalanwalt Bobek zur Mutagenese und Gentechnik

Pressemeldung: German:  http://bit.ly/2Dlgsav

  English:https://curia.europa.eu/jcms/upload/docs/application/pdf/2018-01/cp180004en.pdf

  Vollständiger Text: deutsch: http://curia.europa.eu/juris/document/document.jsf? text=&docid=198532&pageIndex=0&doclang=DE&mode=req&dir=&occ=first&part=1&cid=779174#Footref12

 English: http://curia.europa.eu/juris/document/document.jsf?text=&docid=198532&pageIndex=0&doclang=EN&mode=req&dir=&occ=first&part=1&cid=779292

 

Hierzu auch: Genome Editing ist nicht immer Gentechnik und führt nicht immer zu GVOs

https://www.biotech-gm-food.com/aktuelles/mutagenese-nicht-immer-gentechnik

 

EuGH-Urteil zur rechtlichen Einordnung von Mutagenese Verfahren


Urteil des Gerichtshofes (Große Kammer) vom 25. Juli 2018 in der Rechtsache C-528/16 betreffend ein Vorabentscheidungsersuchen nach Art, 267 AEUV, eingereicht vom Conseil d´Etat (Staatsrat, Frankreich mit Entscheidung vom 3.Oktober, beim Gerichtshof eingegangen am 17.Oktober 2016 in dem Verfahren Confédération paysanne, Réseau Semences Paysannes, Les Amis de la Terre France, Collectif VigilanceOGM et Pesticides16, Vigilance OG2M, CSFV49, O GM dangers, Vigilance OGM 33, Fédération Nature et Progrès gegen Premierministre, Ministère de l’Agriculture, de’Agroalimentaire et de la Forêt

https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:62016CJ0528&from=DE

hierzu auch:

https://www.biotech-gm-food.com/kommentare/eugh-urteil-mutagenese-ist-gentech

B: Publikationen zur Regelung der Gentechnik in Europa und neuen Züchtungstechniken vor

    dem EuGH-Urteil C-528/16


Ein genereller Überblick:


Ammann Klaus (2014) Genomic Misconception: a fresh look at the biosafety of transgenic and conventional crops. A plea for a

process  agnostic regulation  New Biotechnology  31(1)
http://dx.doi.org/10.1016/j.nbt.2013.04.008 and http://www.ask-force.org/web/NewBiotech/Ammann-Genomic-Misconception-printed-2014.pdf 

 and separate bibliography-fulltext

http://www.ask-force.org/web/Genomic-Misconception/Ammann-Bibliography-fulltext-GENOMIC-MISCONCEPTION-2014.pdf


High Level Group of Scientific Advisors / Scientific Advice Mechanism (SAM): Explanatory Notes 02/2017: New techniques in

Agricultural Biotechnology High Level Group of Scientific Advisors
https://ec.europa.eu/research/sam/pdf/topics/explanatory_note_new_techniques_agricultural_biotechnology.pdf

Die Zusammenfassung auf den Seiten 17-24 gibt einen guten Überblick über den Inhalt der 168 Seiten umfassenden Publikation.


Wissenschaftlerkreis Grüne Gentechnik e.V. (WGG) Was ist eigentlich …?! – Neue Züchtungstechniken sachlich und verständlich

erklärt

https://www.wgg-ev.de/infos/neue-zuechtungstechniken/


Podevin, N., Devos, Y., Davies, H. V. and Nielsen, K. M. (2012): Transgenic or not? No simple answer! New biotechnology-based plant

breeding techniques and the regulatory landscape. EMBO Rep 13 (12), 1057-1061
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3512411/pdf/embor2012168a.pdf


Wolt J. D., Wang K. and Yang Bing Y. (2015): The Regulatory Status of Genome-edited Crops. 

Plant Biotechnology Journal
http://dx.doi.org/10.1111/pbi.12444 and

http://www.ask-force.org/web/Genomics/Wolt-Regulatory-Status-Genome-edited-Crops-2015.pdf


Tagliabue G. (2015): The meaningless pseudo‐category of “GMOs”, The trouble with the “new techniques” for genetically modifying

crops demonstrates the illogical process‐based definition of GMOs in EU regulation. EMBO Rep. November 11, 2015 online,
DOI10.15252/embr.201541385,
http://onlinelibrary.wiley.com/doi/10.15252/embr.201541385/epdf

http://www.ask-force.org/web/Regulation/Tagliabue-Meaningless-Pseudocategory-GMOs-2015.pdf


Sprink, T., Eriksson, D., Schiemann, J. and Hartung, F. (2016): Regulatory hurdles for genome editing: process- vs. product-based

approaches in different regulatory contexts. Plant Cell Rep. 35 (7), 1493-1506
https://link.springer.com/content/pdf/10.1007%2Fs00299-016-1990-2.pdf

http://www.ask-force.org/web/Genomics/Sprink-Regulatory-Hurdles-Genome-Editing-2016.pdf


Davison J. and Ammann K. (2017): New GMO regulations for old: Determining a new future for EU crop biotechnology.

GM Crops & Food 8 (1), 13-34; http://dx.doi.org/10.1080/21645698.2017.1289305
http://www.ask-force.org/web/Regulation/Davison-Ammann-New-GMO-regulatioins-for-old-Determining-a-new-future-for-EU-crop-biotechnology-2017.pdf


Eriksson D. and Ammann K, (2017): Universally Acceptable View on the Adoption of Improved Plant Breeding Techniques.

Front. Plant Sci. 7:1999 , https://doi.org/10.3389/fpls.2016.01999
http://www.ask-force.org/web/Regulation/Eriksson-Ammann-Universally-Acceptable-View-Adoption-Improved-Plant-Breeding-Techniques-20170106.pdf

 and full text version with more references

http://www.ask-force.org/web/Davison/Eriksson-Ammann-Frontiers-in-Plant-Science-fulltext-20161118.pdf


Jany Kl.-D. (2017): Wissenschaft mit Fuessen getreten. Laborjournal 2017-1;

German: http://www.ask-force.org/web/Fundamentalists/Jany-Wissenschaft-mit-Fuessen-getreten-2017.pdf
English: 
http://www.ask-force.org/web/Fundamentalists/Jany-Science-trampled-under-foot-2017.pdf


Tagliabue G. (2017): The EU-legislation on “GMOs” between nonsense and protectionism – An ongoing Schumpeterian chain of

public choises. GM Crops & Foods 8 (1), 57-73;

http://dx.doi.org/10.1080/21645698.2016.1270488 ,
http://www.ask-force.org/web/Regulation/Tagliabue-The-EU-legislation-on-GMOs-2017.pdf

C: Publikationen zum EuGH-Urteil C-528/16 oder im direkten Zusammenhang


     hier nur eine selektive Auswahl:


Andersen E. und Schreiber K. (2020): Genome Editing“ vor dem EuGH und seine Folgen. NuR 42: 99–106

Der Beitrag untersucht die Reaktionen, die auf das EuGH-Urteil C-528/16 vom 25. 7. 2018 zur Anwendbarkeit der Europäischen Freisetzungsrichtlinie 2001/18/EG auf sogenannte Genomeditierungsverfahren im Rahmen der Grünen Gentechnologie erfolgt sind. Seit der Verkündung des Urteils im Juli 2018 wurde es umfassend und zum Teil auch höchst kritisch aus naturwissenschaftlicher, rechtswissenschaftlicher und wirtschaftlicher Perspektive beleuchtet und bewertet. Ziel dieses Beitrages ist es, einen Überblick über die unterschiedlichen Reaktionen zu geben und wesentliche Kritikpunkte aufzuzeigen. Damit soll die Bedeutung des Urteils im Rahmen der Diskussion um die Regulierung der Grünen Gentechnik eingeschätzt und bewertet werde

https://www.jura.uni-freiburg.de/de/institute/ioeffr2/downloads/forschung/cibss/andersen-schreiber-nur-2020-99


Andersen E. und Schreiber K. (2020): Neue Regeln für die Gentechnik in Europa? Eine Darstellung der faktischen

Auswirkungen des EuGH-Urteils C-528/16 und der im Nachgang ergangenen Vorschläge für eine Reform des europäischen Gentechnikrechts. NuR 42,:168 –178, | https://doi.org/10.1007/s10357-020-3656-7

Das Urteil des EuGH in der Sache Confédération paysanne hat nicht nur Reaktionen im Hinblick auf die rechtliche Begründung und naturwissenschaftliche Nachvollziehbarkeit der Entscheidung hervorgerufen, sondern auch im Hinblick auf Auswirkungen des Urteils auf die Pflanzenbiotechnologie in Europa. Im Nachgang zur Entscheidung wird von Akteuren aus dem wissenschaftlichen und (wirtschafts-)politischen Bereich eine Reform des europäischen Gentechnikrechts gefordert. Diese Reformvorschläge werden abschließend dargestellt und diskutiert Zu Beginn ist festzuhalten, dass das EuGH-Urteil nur einen Anwendungsfall von Genomeditierungsverfahren betrifft, sog. neuartige, zielgerichtete Mutageneseverfah-ren.1 Ob diese in den Anwendungsbereich der Richtlinie 2001/18/EG über die absichtliche Freisetzung genetisch veränderter Organismen in die Umwelt (im Folgenden FreisetzungsRL) fallen, war vor der Entscheidung des EuGH strit-tig.3 Kennzeichnend für zielgerichtete Mutageneseverfahren ist, an einer zuvor bestimmten Stelle im Genom Mutationen hervorzurufen, ohne Fremd-DNA einzufügen. Dabei können unter anderem nur einzelne Basenpaare verändert wer-den.4 Der EuGH urteilte in seiner Entscheidung, dass das europäische Gentechnikrecht auf Pflanzen, die mit neuartigen Mutageneseverfahren erzeugt worden sind, anwendbar ist

https://link.springer.com/content/pdf/10.1007/s10357-020-3656-7.pdf


Christiansen A. T., Andersen. M., Kappel K. (2019): Are current EU policies on GMOs justified? Transgenic Res. |

 https://doi.org/10.1007/s11248-019-00120-x

The European Court of Justice’s recent ruling that the new techniques for crop development are to be considered as genetically modified organisms under the European Union’s regulations exacerbates the need for a critical evaluation of those regulations. The paper analyzes the regulation from the perspective of moral and political philosophy. It considers whether influential arguments for restrictions of genetically modified organisms provide cogent justifications for the policies that are in place, in particular a pre-release authorization requirement, mandatory labelling, and de facto bans (in the form of withholding or opting out of authorizations). It is argued that arguments pertaining to risk can justify some form of pre-release authorization scheme, although not necessarily the current one, but that neither de facto bans nor mandatory labelling can be justified by reference to common arguments concerning naturalness, agricultural policy (in particular the promotion of organic farming), socio-economic effects, or consumers’ right to choose.

https://link.springer.com/article/10.1007/s11248-019-00120-x

 

Custers R, Casacuberta JM, Eriksson D, Sági L and Schiemann J (2019) Genetic Alterations That Do or o Not Occur Naturally;

Consequences for Genome Edited Organisms in the Context of Regulatory Oversight. Front. Bioeng. Biotechnol. 6: 213. | https://doi.org/10.3389/fbioe.2018.00213 

The ability to successfully exploit genome edited organisms for the benefit of food security and the environment will essentially be determined by the extent to which these organisms fall under specific regulatory provisions. In many jurisdictions the answer to this question is considered to depend on the genetic characteristics of the edited organism, and whether the changes introduced in its genome do (or do not) occur naturally. We provide here a number of key considerations to assist with this evaluation as well as a guide of concrete examples of genetic alterations with an assessment of their natural occurrence. These examples support the conclusion that for many of the common types of alterations introduced by means of genome editing, the resulting organisms would not be subject to specific biosafety regulatory provisions whenever novelty of the genetic combination is a crucial determinant.

https://www.frontiersin.org/articles/10.3389/fbioe.2018.00213/full

 

Dederer H.- G. (2019): Genomeditierung ist Gentechnik Eine kritische Analyse des EuGH-Urteils Confédération paysanne

 u.a. Zeitschrift für Europäisches Umwelt- und Planungsrecht 17 (2); 236 - 245

On July 25, 2018, the Court of Justice of the European Union (CJEU), sitting in a Grand Chamber, rendered its highly controversial judgment in the case C-528/16, Confédération paysanne and Others. In light of the CJEU’s reasoning, genome-edited organisms are, without exemption, genetically modified organisms (GMOs) within the meaning of Directive 2001/18/EC and, therefore, ultimately, governed by the EU’s entire regulatory framework for GMOs. The fundamental source for an in-depth understanding of the Court’s reasoning is not the Advocate General’s opinion, which the Court blatantly dismissed, but the preliminary reference by the French Conseil d’État. In particular, the CJEU adopted the Conseil d‘État’s assumptions of risks arising allegedly from genome editing techniques, which, in turn, prompted the Court to apply the precautionary principle. The Court is to be criticized, inter alia, for not having impugned and scrutinized the alleged risks and for having applied the precautionary principle in disregard of its own case-law. Eventually, it is, by now, the Union legislator’s task to decide on whether genome-edited organisms should be governed or, rather, exempted, at least in part, from the EU’s legal framework on GMOs in order to avoid transatlantic trade conflicts and to ensure the competitivenes especially of small and medium-sized plant and animal breeders in Europe.

https://eurup.lexxion.eu/article/eurup/2019/2/12

 

Faltus T. (2018): Das Mutagenese-Urteil des EuGH schwächt die rechtssichere Anwendung der Gentechnik. ZUR 10, 524

Mit Urteil vom 25.7.2018 in der Rechtssache C-528/16 hat der EuGH entschieden, dass alle mit Verfahren der Mutagenese gewonnenen Organismen genetisch veränderte Organismen (GVOs) im Sinne der EU-Freisetzungsrichtlinie 2001/18/EG sind. Zudem hat der EuGH entschieden, dass die Mutageneseausnahme der Freisetzungsrichtlinie, die zu einem Anwendungsausschluss die Richtlinie führt, nur für die Mutageneseverfahren gilt, die bis zum Erlass der Richtlinie etabliert waren. Daher werden die GVOs vom Anwendungsbereich der Richtlinie erfasst, die durch neuere Mutageneseverfahren erzeugt worden sind; unabhängig von deren höheren Genauigkeit und besseren Steuerbarkeit im Vergleich zu den älteren Verfahren. Der EuGH hat im Rahmen seines Mutagenese-Urteils allerdings den naturwissenschaftlich-technischen Kenntnisstand fehlerhaft rezipiert und vor allem Anreize für eine proaktive Umgehung seiner Rechtsprechung in Bezug auf neue Verfahren der Mutagenese, wozu auch die Methoden der Genomeditierung verwendet werden können, geschaffen.

https://beck-online.beck.de/Bcid/Y-300-Z-ZUR-B-2018-S-524-N-1

 

Jorasch, P. (2020): Will the EU stay out of step with science and the rest of the world on plant breeding innovation?.

Plant Cell Rep 39, 163–167 | https://doi.org/10.1007/s00299-019-02482-2

Innovations in plant breeding like genome editing methods raised questions about the adequacy of established regulatory policies for plant breeding and biotechnology in view of these new breeding methods and the resulting products. Most countries follow the principle approach that only those plants will be regulated under biotech regulations that include a novel combination of genetic material following the Cartagena protocol. In contrast to this, the European Court of Justice interpreted the current EU biotech regulations in a way that these also apply to plants resulting from new mutagenesis breeding, even if these plants are indistinguishable from conventionally bred plants. This ruling created strong reactions and concerns stating that recent technical developments have made the EU GMO Directive no longer fit for purpose. The article describes ongoing policy developments on EU level that might result in an update of current regulations.

https://link.springer.com/article/10.1007/s00299-019-02482-2

 

Kahrmann J. and Leggewie G. (2018): CJEU’s Ruling Makes Europe’s GMO Legislation Ripe for Reformation. Zeitschrift für

Europäisches Umwelt- und Planungsrecht 16 (4), 497 - 504

Am 25.7.2018 urteilte der EuGH, dass alle Organismen, die mit Genome Editing Techniken hergestellt wurden, in den Anwendungsbereich des europäischen Gentechnikrechts fallen. Fast so kritikwürdig wie die sehr streitbaren wissenschaftlichen Grundaussagen, auf denen das Urteil fußt, ist die unterlassene eingehende Begründung der Entscheidung. Spätestens nach diesem Urteil ist das europäische Gentechnikrecht nicht zukunftsfähig. Dies verlangt nach einem gesetzgeberischen Handeln auf EU-Ebene.

https://eurup.lexxion.eu/article/EURUP/2018/4/10?_locale=en


POORTVLIET P.M., PURNHAGEN K.P., BOERSMA R. and GREMMEN B. (2019): On the Legal Categorisation of New Plant Breeding

Technologies: Insights from Communication Science and Ways Forward. European Journal of Risk Regulation |

https://doi.org/10.1017/err.2019.10

In July 2018 the Court of Justice of the European Union (CJEU) ruled that organisms obtained from most New Plant Breeding Technologies (NPBT) fulfil the requirements of the GMO definition of Directive 2001/18. Practically, organisms created with NPBT have since been legally treated as GMOs. While we do not seek to contest the judgment in itself, in the present contribution we draw attention to the effects of such a categorisation from the perspective of communication science. Extrapolating from communication research conducted in adjacent technology domains, we will argue that by putting organisms obtained from NPBT semantically in the same basket as GMOs may carry a serious risk – transferring analogous communication problems that GMOs encountered in the past, to organisms obtained from NPBT, while they may not address similar risks. Possible consequences such as these can hardly be considered at the stage of legal interpretation (such as with the CJEU). Rather, as discussion now unfolds whether and how to change the legal definition, insights from communication science and risk perception research on the effect of such a definition should be taken into account.

https://www.cambridge.org/core/journals/european-journal-of-risk-regulation/article/on-the-legal-categorisation-of-new-plant-breeding-technologies-insights-from-communication-science-and-ways-forward/A8404A3F4C4FE28A9C1F50A05EE2BA6E


Schulman A.H., Oksman-Caldentey K.-M. and Teeri T.H. (2019): European Court of Justice delivers no justice to Europe on

genome-edited crop. Plant Biotechnology Journal | https://doi.org/10.1111/pbi.13200

The advent of agriculture about ten millennia ago, the Green Revolution of the 1960s, and all agriculture in‐between and since was founded on identification and use of genetic variation. Traditional farmers selected higher producing or better tasting variants and propagated them. The 19th century advent of plant breeding exploited variation by use of sexual crosses. The science of breeding made great progress through the application of Mendelian, quantitative, and population genetics, heterosis, and ultimately molecular markers and genomic selection. However, modern breeders in essence still search for the variation that gives needed traits and introduce it into their breeding programs. The rest is just combining alleles.

https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.13200

 

Smyth S.J. and Lassoued R. (2018): Agriculture R&D Implications of the CJEU’s Gene-Specific Mutagenesis Ruling.

Trends in Biotechnology, https://doi.org/10.1016/j.tibtech.2018.09.004

On 25 July 2018, the Court of Justice of the European Union (CJEU) ruled that gene-specific mutagenesis must be regulated as genetically modified organism (GMO) technologies. However, the costs to agricultural research and development (R&D) innovation will be staggering, not to mention the brain drain to other countries. As a result, Europe can now be known as the deathplace of agricultural breeding innovations.

https://www.sciencedirect.com/science/article/pii/S0167779918302579


Spranger, T. (2021): Die “history of safe use” im europäischen Gentechnikrecht. NuR 43, 746–751 |

https://doi.org/10.1007/s10357-021-3916-1

Die “grüne” Gentechnik ist seit jeher ein spannungsreiches Feld: Während die Befürworter im Interesse hehrer Ziele eine “technikfreundlichere” Regulierung fordern und sozioökonomischen Bedenken die Existenzberechtigung absprechen, verweisen Kritiker auf mögliche Risiken für Mensch und Umwelt, aber auch darauf, dass Gentechnik oftmals als Projektionsfläche für nicht eingelöste Heilsversprechen genutzt wird. Mit der Erfindung der Genom-Editierung hat der ohnehin recht offensiv geführte Diskurs nochmals an Schärfe gewonnen. Das 2018 ergangene Urteil des EuGH in der Rechtssache C-528/16 hat zwar grundlegende Weichenstellungen für eine möglichst umfassende Gentechnik-Regulierung vorgenommen, bietet aber auch Anlass zur Entwicklung von Umgehungsstrategien. Der vorliegende Beitrag untersucht den in diesem Kontext besonders wichtigen Terminus der “history of safe use”.

https://link.springer.com/article/10.1007/s10357-021-3916-1

 

van der Meer P., Angenon G., Bergmans H., Buhk H.J. et al. (2021): The Status under EU Law of Organisms Developed through

Novel Genomic Techniques. European Journal of Risk Regulation (2020),  doi:10.1017/err.2020.105

In a ruling on 25 July 2018, the Court of Justice of the European Union concluded that organisms obtained by means of techniques/methods of mutagenesis constitute GMOs in the sense of Directive 2001/18, and that organisms obtained by means of techniques/methods of directed mutagenesis are not excluded from the scope of the Directive. Following the ruling, there has been much debate about the possible wider implications of the ruling. In October 2019, the Council of the European Union requested the European Commission to submit, in light of the CJEU ruling, a study regarding the status of novel genomic techniques under Union Law. For the purpose of the study, the Commission initiated stakeholder consultations early in 2020. Those consultations focused on the technical status of novel genomic techniques.

This article aims to contribute to the discussion on the legal status of organisms developed through novel genomic techniques, by offering some historical background to the negotiations on the European Union (EU) GMO Directives as well as a technical context to some of the terms in the Directive, and by analysing the ruling. The article advances that (i) the conclusion that organisms obtained by means of techniques/methods of mutagenesis constitute GMOs under the Directive means that the resulting organisms must comply with the GMO definition, ie the genetic material of the resulting organisms has been altered in a way that does not occur naturally by mating and/or natural recombination; (ii) the conclusion that organisms obtained by means of techniques/methods of directed mutagenesis were not intended to be excluded from the scope of the Directive is not inconsistent with the negotiation history of the Directive; (iii) whether an organism falls under the description of “obtained by means of techniques/methods of directed mutagenesis” depends on whether the genetic material of the resulting organisms has been altered in a way that does not occur naturally by mating and/or natural recombination. Finally, the article offers an analysis of the EU GMO definition, concluding that for an organism to be a GMO in the sense of the Directive, the technique used, as well as the genetic alterations of the resulting organism, must be considered.

https://www.cambridge.org/core/journals/european-journal-of-risk-regulation/article/status-under-eu-law-of-organisms-developed-through-novel-genomic-techniques/4812A77647B94B3BB789D3532379C081

 

Zimny T, Eriksson D. (2020): Exclusion or exemption from risk regulation?

A comparative analysis of proposals to amend the EU GMO legislation. EMBO Reports 21:e51061 | https://doi.org/10.15252/embr.202051061

In the EU, the legal status of agricultural products resulting from the use of new breeding techniques (NBTs)—among others the new gene-editing technologies—has been subject to dispute even before the Court of Justice of the EU (CJEU) ruled that products of newer forms of mutagenesis should be regulated as genetically modified organisms (GMOs; Breyer et al, 2009; Abbott, 2015). In November 2019, the Council of the EU requested the European Commission (EC) to submit a study, and a proposal if appropriate, for addressing the legal status of novel genomic techniques under Union law, and this will likely provide more clarity for the products of NBTs. In the meantime, several proposals for amending the current GMO legislation have been published. We here provide an analysis of their respective key features, similarities and differences, and potential implications of their adoption.

https://www.embopress.org/doi/full/10.15252/embr.202051061

 

Weitgehend alle Publikationen im direkten Zusammenhang  mit dem EuGH-Urteil sind in nachfolgenden Datei aufgelistet.

D: Konventionelle Züchtungsmethoden


Konventionelle Züchtungsmethoden und Mutationszüchtung (Auswahl)

Van de Weil C., Schaart J., Niks R. & Visser R. (2010): Traditional plant breeding methods.

Wageningen UR Plant Breeding, Wageningen, May 2010 Report 338


Ahloowalia B., Maluszynski M. & Nichterlein K. (2004): Global impact of mutation-derived varieties. Euphytica 135, 187–204 |

https://doi.org/10.1023/B:EUPH.0000014914.85465.4f

During the past seventy years, worldwide more than 2250 varieties have been released that have been derived either as direct mutants or from their progenies. Induction of mutations with radiation has been the most frequently used method for directly developed mutant varieties. The prime strategy in mutation-based breeding has been to upgrade the well-adapted plant varieties by altering one or two major traits, which limit their productivity or enhance their quality value. In this paper, the global impact of mutation-derived varieties on food production and quality enhancement is presented. In addition, the economic contribution of the selected mutant varieties of rice, barley, cotton, groundnut, pulses, sunflower, rapeseed and Japanese pear is discussed. In several mutation-derived varieties, the changed traits have resulted in synergistic effect on increasing the yield and quality of the crop, improving agronomic inputs, crop rotation, and consumer acceptance. In contrast to the currently protected plant varieties or germplasm and increasing restrictions on their use, the induced mutants have been freely available for plant breeding. Many mutants have made transnational impact on increasing yield and quality of several seed-propagated crops. Induced mutations will continue to have an increasing role in creating crop varieties with traits such as modified oil, protein and starch quality, enhanced uptake of specific metals, deeper rooting system, and resistance to drought, diseases and salinity as a major component of the environmentally sustainable agriculture. Future research on induced mutations would also be important in the functional genomics of many food crops.

https://link.springer.com/article/10.1023/B:EUPH.0000014914.85465.4f

 

Mutationszüchtungsdatenbank (FAO/IAEA Mutant Variety Database) der Internationalen Atomenergie-Organisation (IAEO) und der Ernährungs- und Landwirtschaftsorganisation der Vereinten Nationen (FAO)

Weltweit sind 3281 Pflanzen, die durch herkömmliche Mutationszüchtung erzeugt wurden, registriert. Insgesamt sind über 210 Pflanzenarten aus über 70 Ländern zugelassen; auf Deutschland entfallen dabei 172 Zulassungen.

https://mvd.iaea.org/

 

IAEA (1991): Plant Mutation Breeding for Crop Improvement, Volume 2

Proceedings of a symposium jointly organized by the IAEA and FAO, Vienna, 18–22 June 1990. The technology of mutation induction has been accepted by plant breeders as a valuable additional tool for creating improved cultivars for agriculture and horticulture. It was amply demonstrated at the symposium that this technique has been applied with great success in many annual seed propagated crops such as rice, barley, wheat, cotton, soybean and pea. The technological problems identified primarily concerned vegetatively propagated crops and, in general, the logistic difficulties in identifying desirable mutants in large mutagenized populations.
Contents: (Vol. 2) Mutation breeding with particular objectives; Methodology of mutation breeding; Panel: Part 1: The role of plant breeding for the future of mankind and the need for genetic resources and opportunities for mutagenesis or gene engineering; Part 2: Plant mutation breeding: Its future role, the methodology needed, training and the research priorities.

https://www.iaea.org/publications/3711/plant-mutation-breeding-for-crop-improvement-volume-2

 

Forloni M., Liu A.Y., and Wajapeyee N. (2019): Methods for In Vitro Mutagenesis

 Cold Spring Harb Protoc; doi:10.1101/pdb.top097733

Several different methodologies for mutagenesis have been developed to introduce mutations at predetermined sites or regions within mammalian genes. These methods of in vitro mutagenesis have had a transforming effect on the understanding of functions of protein, transcription regulatory elements, and noncoding RNAs and are now integral to molecular biology investigations. In this introduction, we summarize the most commonly used experimental approaches for mutagenesis and their major applications.

http://cshprotocols.cshlp.org/content/2019/12/pdb.top097733.full


Pfenning M., Palfay G. & Guille T. (2008): The CLEARFIELD® technology – A new broad-spectrum post-emergence weed

control system for European sunflower growers. Journal of Plant Diseases and Protection, Special Issue XXI, ISSN 1861-4051.

Sunflower (Helianthus annuus L.) is an important oilseed crop in Europe with a total planted area of about 9.2 million hectares in 2006. Weeds are a major production problem in sunflower cultivation. Sunflower is a poor competitor during the early growth stages until canopy closure. Therefore, weeds compete successfully during these growth stages for light, water and nutrients. Limitation of available herbicides, especially herbicides to control broadleaf weeds, causes considerable yield losses to sunflower producers. The CLEARFIELD technology has been developed in sunflower to allow the use of imidazolinone herbicides as a post-emergence weed control option. The mode of action of imidazolinone herbicides is the inhibition of the enzyme acetohydroxyacid synthase (AHAS). While conventional sunflower is sensitive to imidazolinone herbicides, CLEARFIELD sunflower hybrids have been modified to survive an otherwise lethal application of these herbicides. The trait for tolerance to imidazolinone herbicides in CLEARFIELD sunflower goes back to a naturally occurring mutation in the AHAS gene detected in a wild population of Helianthus annuus. This technology does not involve the introduction of foreign genetic material from other sources and thus is characterized as a non-GMO (genetically modified organism) process. CLEARFIELD herbicides provide exceptional foliar and soil activity to control a broad spectrum of weeds occurring across regions and cropping systems where sunflowers are produced.

http://www.ask-force.org/web/HerbizideTol/Pfenning-CLEARFIELD-technology-Sunflower-2008.pdf

Tan S. et al. (2005): Imidazolinone-tolerant crops: history, current status and future. Pest Management Science, 61: 246-257

 - DOI: 10.1002/ps.993.

Imidazolinone herbicides, which include imazapyr, imazapic, imazethapyr, imazamox,imazamethabenz and imazaquin, control weeds by inhibiting the enzyme acetohydroxyacid synthase(AHAS), also called acetolactate synthase (ALS).AHAS is a critical enzyme for the biosynthesis of branched-chain amino acids in plants. Several variant AHAS genes conferring imidazolinone tolerance were discovered in plants through mutagenesis and selection, and were used to create imidazolinone-tolerant maize (Zea maysL), wheat (Triticum aestivumL), rice (Oryza sativaL), oilseed rape (BrassicanapusL) and sunflower (Helianthus annuusL). These crops were developed using conventional breeding methods and commercialized as Clearfield∗crops from 1992 to the present. Imidazolinone herbicides control a broad spectrum of grass and broadleaf weeds in imidazolinone-tolerant crops, including weeds that are closely related to the crop itself and some key parasitic weeds. Imidazolinone-tolerant crops may also prevent rotational crop injury and injury caused by interaction between AHAS-inhibiting herbicides and insecticides. A single target-site mutation in the AHAS gene may confer tolerance to AHAS-inhibiting herbicides, so that it is technically possible to develop the imidazolinone-tolerance trait in many crops. Activities are currently directed toward the continued improvement of imidazolinone tolerance and development of new Clearfield∗crops. Management of herbicide-resistant weeds and gene flow from cropsto weeds are issues that must be considered with the development of any herbicide-resistant crop. Thus extensive stewardship programs have been developed to address these issues for Clearfield∗crops.

https://naldc.nal.usda.gov/download/6812/PDF

 

Tan S. and Bowe S.J. (2012): Herbicide-tolerant crops developed from mutations. In Plant mutation breeding and

biotechnology, Eds Shu QY et al, ISBN 9781780640853

https://www.cabi.org/VetMedResource/ebook/20123349362


Share by: